A note on the choice and the estimation of Kriging models for the analysis of deterministic computer experiments

Autor: Delphine Dupuy, Anca Badea, David Ginsbourger, Olivier Roustant, Laurent Carraro
Přispěvatelé: Ginsbourger, David, Département Méthodes et Modèles Mathématiques pour l'Industrie (3MI-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre G2I, Consortium DICE
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Popis: Our goal in the present article to give an insight on some important questions to be asked when choosing a Kriging model for the analysis of numerical experiments. We are especially concerned about the cases where the size of the design of experiments is relatively small to the algebraic dimension of the inputs. We first fix the notations and recall some basic properties of Kriging. Then we expose two experimental studies on subjects that are often skipped in the field of computer simulation analysis: the lack of reliability of likelihood maximization with few data and the consequences of a trend misspecification. We finally propose an example from a porous media application, with the introduction of an original Kriging method in which a non-linear additive model is used as an external trend.
Databáze: OpenAIRE