Transfer Learning from Synthetic Data Applied to Soil–Root Segmentation in X-Ray Tomography Images

Autor: Richard Schielein, Stefan Gerth, David Rousseau, Carole Frindel, Clément Douarre
Přispěvatelé: Université d'Angers (UA), Fraunhofer Institute for Systems and Innovation Research (Fraunhofer ISI ), Fraunhofer (Fraunhofer-Gesellschaft), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Institut de Recherche en Horticulture et Semences (IRHS), Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), French Government : ANR-11-BTBR-0007, EU COST action 'The quest for tolerant varieties: phenotyping at plant and cellular level' FA1306.
Jazyk: angličtina
Rok vydání: 2018
Předmět:
root systems
segmentation
X-ray tomography
transfer learning
0106 biological sciences
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences
Computer science
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
02 engineering and technology
01 natural sciences
Synthetic data
GeneralLiterature_MISCELLANEOUS
Low contrast
Robustness (computer science)
0202 electrical engineering
electronic engineering
information engineering

Traitement du signal et de l'image
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
Radiology
Nuclear Medicine and imaging

Segmentation
Electrical and Electronic Engineering
agriculture
Vegetal Biology
business.industry
Deep learning
Signal and Image processing
Pattern recognition
relation plante-sol
Computer Graphics and Computer-Aided Design
Agricultural sciences
Simulated data
020201 artificial intelligence & image processing
Computer Vision and Pattern Recognition
Artificial intelligence
Tomography
Transfer of learning
business
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Biologie végétale
Sciences agricoles
010606 plant biology & botany
Zdroj: Journal of Imaging
Journal of Imaging, MDPI, 2018, 4 (5), pp.65. ⟨10.3390/jimaging4050065⟩
www.mdpi.com/journal/jimaging
Journal of Imaging; Volume 4; Issue 5; Pages: 65
Journal of Imaging 5 (4), 65. (2018)
ISSN: 2313-433X
DOI: 10.3390/jimaging4050065⟩
Popis: International audience; One of the most challenging computer vision problems in the plant sciences is the segmentation of roots and soil in X-ray tomography. So far, this has been addressed using classical image analysis methods. In this paper, we address this soil-root segmentation problem in X-ray tomography using a variant of supervised deep learning-based classification called transfer learning where the learning stage is based on simulated data. The robustness of this technique, tested for the first time with this plant science problem, is established using soil-roots with very low contrast in X-ray tomography. We also demonstrate the possibility of efficiently segmenting the root from the soil while learning using purely synthetic soil and roots.
Databáze: OpenAIRE