Utilization of the solid sorbent media in monitoring of airborne cyclophosphamide concentrations and the implications for occupational hygiene

Autor: Lenka Dolezalova, Pavel Piler, Michal Oravec, Ludek Blaha, Pavel Odráška
Rok vydání: 2011
Předmět:
Zdroj: Journal of Environmental Monitoring. 13:1480
ISSN: 1464-0333
1464-0325
DOI: 10.1039/c0em00660b
Popis: The main objective of the study was to evaluate the applicability of two solid sorbent media (Anasorb 708 and Strata X), the impinger filled with distilled water and PTFE filters for determination of airborne cyclophosphamide (CP) in the hospital working environment. For this purpose, air contamination of Masaryk Memorial Cancer Institute (Czech Republic) was monitored using the sampling apparatus containing the samplers described above. In addition, the surface contamination was also determined using the wipe sampling technique. During the monitoring, contamination of three different workplaces (storage room, preparation room and outpatient clinic) was studied. Using Strata X solid sorbent tubes, airborne CP was determined in all (n = 5) samples collected at the outpatient clinic over a 5 day monitoring period (concentration range: 0.3-4.3 ng m(-3)). Other samplers (including PTFE filters) did not collect any detectable amount of CP (the limit of detection, LOD ≤ 0.1 ng m(-3)). Negative results detected at filter samples indicate that CP determined at Strata X samples was most probably of gaseous origin. Surface contamination ranged from2 to 19,8 to 418 and 133-15,500 pg cm(-2) at the storage room, preparation room and outpatient clinic, respectively. The study showed that evaporation of antineoplastic drugs should not be neglected, albeit the concentrations determined in our study are relatively low. Therefore, proper monitoring of airborne contamination should involve simultaneous sampling of both particle-bonded and gaseous phases. In this way, Strata X sorbent tubes seem to be an effective tool for the sampling of gaseous CP in the indoor air.
Databáze: OpenAIRE