Compiling Stan to generative probabilistic languages and extension to deep probabilistic programming

Autor: Guillaume Baudart, Javier Burroni, Martin Hirzel, Louis Mandel, Avraham Shinnar
Přispěvatelé: Parallélisme de Kahn Synchrone ( Parkas), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), University of Massachusetts [Amherst] (UMass Amherst), University of Massachusetts System (UMASS), IBM T. J. Watson Research Centre, Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Scheme (programming language)
FOS: Computer and information sciences
Computer Science - Machine Learning
Correctness
Semantics (computer science)
Computer science
Computer Science - Artificial Intelligence
Theory of computation → Probabilistic computation Probabilistic programming
Machine Learning (stat.ML)
[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]
computer.software_genre
01 natural sciences
Stan
Machine Learning (cs.LG)
010104 statistics & probability
CCS Concepts
Statistics - Machine Learning
0502 economics and business
Pyro
0101 mathematics
Probabilistic programming language
Software and its engineering → Compilers
050205 econometrics
computer.programming_language
Computer Science - Programming Languages
[INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL]
Syntax (programming languages)
Programming language
05 social sciences
Probabilistic logic
Semantics
Constructed language
Artificial Intelligence (cs.AI)
[INFO.INFO-ES]Computer Science [cs]/Embedded Systems
Compiler
computer
Programming Languages (cs.PL)
Zdroj: PLDI '21-42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation
PLDI '21-42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Jun 2021, Virtual, Canada. pp.497-510, ⟨10.1145/3453483.3454058⟩
PLDI
Popis: International audience; Stan is a probabilistic programming language that is popular in the statistics community, with a high-level syntax for expressing probabilistic models. Stan differs by nature from generative probabilistic programming languages like Church, Anglican, or Pyro. This paper presents a comprehensive compilation scheme to compile any Stan model to a generative language and proves its correctness. We use our compilation scheme to build two new backends for the Stanc3 compiler targeting Pyro and NumPyro. Experimental results show that the NumPyro backend yields a 2.3x speedup compared to Stan in geometric mean over 26 benchmarks. Building on Pyro we extend Stan with support for explicit variational inference guides and deep probabilistic models. That way, users familiar with Stan get access to new features without having to learn a fundamentally new language.
Databáze: OpenAIRE