Passive radiofrequency x-ray dosimeter tag based on flexible radiation-sensitive oxide field-effect transistor
Autor: | Tobias Cramer, Pedro Barquinha, Christophe Loussert, Ana Santa, Elvira Fortunato, Cristina Fernandes, Beatrice Fraboni, Rodrigo Martins, Franck D’Annunzio, Ilaria Fratelli |
---|---|
Přispěvatelé: | DCM - Departamento de Ciência dos Materiais, CENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N), UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias, Cramer, Tobias, Fratelli, Ilaria, Barquinha, Pedro, Santa, Ana, Fernandes, Cristina, D’Annunzio, Franck, Loussert, Christophe, Martins, Rodrigo, Fortunato, Elvira, Fraboni, Beatrice |
Jazyk: | angličtina |
Předmět: |
Materials science
Materials Science 02 engineering and technology Dielectric 010402 general chemistry 01 natural sciences 7. Clean energy law.invention Ionizing radiation law Dosimetry General Research Articles Dosimeter Multidisciplinary business.industry Transistor SciAdv r-articles 021001 nanoscience & nanotechnology equipment and supplies Subthreshold slope 0104 chemical sciences Threshold voltage Applied Sciences and Engineering Optoelectronics Field-effect transistor 0210 nano-technology business Research Article |
Zdroj: | Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP Science Advances |
ISSN: | 2375-2548 |
DOI: | 10.1126/sciadv.aat1825 |
Popis: | We present a novel microelectronic x-ray dosimeter compatible with flexible plastic substrates and passive RFID detection. Distributed x-ray radiation dosimetry is crucial in diverse security areas with significant environmental and human impacts such as nuclear waste management, radiotherapy, or radioprotection devices. We present a fast, real-time dosimetry detection system based on flexible oxide thin-film transistors that show a quantitative shift in threshold voltage of up to 3.4 V/gray upon exposure to ionizing radiation. The transistors use indium-gallium-zinc-oxide as a semiconductor and a multilayer dielectric based on silicon oxide and tantalum oxide. Our measurements demonstrate that the threshold voltage shift is caused by the accumulation of positive ionization charge in the dielectric layer due to high-energy photon absorption in the high-Z dielectric. The high mobility combined with a steep subthreshold slope of the transistor allows for fast, reliable, and ultralow-power readout of the deposited radiation dose. The order-of-magnitude variation in transistor channel impedance upon exposure to radiation makes it possible to use a low-cost, passive radiofrequency identification sensor tag for its readout. In this way, we demonstrate a passive, programmable, wireless sensor that reports in real time the excess of critical radiation doses. |
Databáze: | OpenAIRE |
Externí odkaz: |