Operational Estimation of Landslide Runout: Comparison of Empirical and Numerical Methods

Autor: Yannick Thiery, Anne Mangeney, Gilles Grandjean, Jeremy Rohmer, Antoine Lucas, Clara Levy, Marc Peruzzetto
Přispěvatelé: Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
landslide
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
0211 other engineering and technologies
02 engineering and technology
010502 geochemistry & geophysics
01 natural sciences
Power law
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology
statistical analysis
Cliff
[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment

uncertainty
Scaling
0105 earth and related environmental sciences
021110 strategic
defence & security studies

geography
geography.geographical_feature_category
Numerical analysis
lcsh:QE1-996.5
Prediction interval
runout
Landslide
Geodesy
Debris
lcsh:Geology
numerical modeling
13. Climate action
General Earth and Planetary Sciences
Martinique
Geology
Zdroj: Geosciences, Vol 10, Iss 424, p 424 (2020)
Geosciences
Geosciences, Geological Survey of Iran, 2020, 10 (11), pp.424. ⟨10.3390/geosciences10110424⟩
Volume 10
Issue 11
ISSN: 2076-3263
1023-7429
DOI: 10.3390/geosciences10110424⟩
Popis: A key point of landslide hazard assessment is the estimation of their runout. Empirical relations linking angle of reach to volume can be used relatively easily, but they are generally associated with large uncertainties as they do not consider the topographic specificity of a given study site. On the contrary, numerical simulations provide more detailed results on the deposits morphology, but their rheological parameters can be difficult to constrain. Simulating all possible values can be time consuming and incompatible with operational requirements of rapid estimations. We propose and compare three operational methods to derive scaling power laws relating the landslide travel distance to the destabilized volume. The first one relies only on empirical relations, the second one on numerical simulations with back-analysis, and the third one combines both approaches. Their efficiency is tested on three case studies: the Samperre cliff collapses in Martinique, Lesser Antilles (0.5 to 4×
106 m3), the Frank Slide rock avalanche (36×
106 m3) and the Samperre cliff collapses in Martinique, Lesser Antilles (0.5 to 4×
106 m3) the Fei Tsui debris slide in Hong Kong (0.014×
106 m3). Purely numerical estimations yield the smallest uncertainty, but the uncertainty on rheological parameters is difficult to quantify. Combining numerical and empirical approaches allows to reduce the uncertainty of estimation by up to 50%, in comparison to purely empirical estimations. However, it may also induces a bias in the estimation, though observations always lie in the 95% prediction intervals. We also show that empirical estimations fail to model properly the dependence between volume and travel distance, particularly for small landslides (<
20,000 <
0.02×
106 m3).
Databáze: OpenAIRE