Role of isozyme group-specific sequence 4 in the isozyme-specific properties of human aldolase C

Autor: Katsuji Hori, Yasushi Sugimoto, Kiyohisa Motoki, Takahiro Kusakabe
Rok vydání: 1998
Předmět:
Zdroj: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 120:665-673
ISSN: 1096-4959
Popis: To assess which regions of the aldolase C molecule are required for exhibiting isozyme-specific kinetic properties, we have constructed nine chimeric enzymes of human aldolases A and C. Kinetic studies of these chimeric enzymes revealed that aldolase C absolutely required its own isozyme group-specific sequences (IGS), particularly IGS-4, for exhibiting the characteristics of aldolase C which differ significantly from those of isozymes A and B (Kusakabe T, Motoki K, Hori K. Human aldolase C: characterization of the recombinant enzyme expressed in Escherichia coli . J Biochem (Tokyo) 1994;115:1172–7). Whereas human aldolases A and B required their own isozyme group-specific sequences-1 and -4 (IGS-1 and -4) as the main determinants of isozyme-specific kinetic properties (Motoki K, Kitajima Y, Hori K. Isozyme-specific modules on human aldolase A molecule. J Biol Chem 1993;268:1677–83; Kusakabe T, Motoki K, Sugimoto Y, Takasaki Y, Hori K. Human aldolase B: liver-specific properties of the isoenzyme depend on type B isozyme group-specific sequence. Prot. Eng. 1994;7:1387–93), the present studies indicate that the IGS-1 is principally substitutable between aldolases A and C. The kinetic data also suggests that the connector-2 (amino acid residues 243–306) may modulate the interaction of IGS units with the α / β barrel of the aldolase molecule.
Databáze: OpenAIRE