Associate spaces of logarithmic interpolation spaces and generalized Lorentz–Zygmund spaces
Autor: | Fernando Cobos, Luz M. Fernández Cabrera, Blanca F. Besoy |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Sequence Logarithm Matemáticas Function space General Mathematics Lorentz transformation 010102 general mathematics Space (mathematics) 01 natural sciences Measure (mathematics) symbols.namesake Análisis matemático symbols Interpolation space 0101 mathematics Mathematics Interpolation |
Zdroj: | E-Prints Complutense. Archivo Institucional de la UCM instname E-Prints Complutense: Archivo Institucional de la UCM Universidad Complutense de Madrid |
ISSN: | 1798-2383 1239-629X |
DOI: | 10.5186/aasfm.2020.4525 |
Popis: | We determine the associate space of the logarithmic interpolation space (X0, X1)1,q,A where X0 and X1 are Banach function spaces over a σ-finite measure space (Ω, µ). Particularizing the results for the case of the couple (L1, L∞) over a non-atomic measure space, we recover results of Opic and Pick on associate spaces of generalized Lorentz-Zygmund spaces L(∞,q;A). We also establish the corresponding results for sequence spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |