Carbonaceous Oxygen Evolution Reaction Catalysts : From Defect and Doping-Induced Activity over Hybrid Compounds to Ordered Framework Structures
Autor: | Jan Luxa, Zdeněk Sofer, Florian Zoller, Daniel Böhm, Dina Fattakhova-Rohlfing, Sebastian Häringer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
Hydrogen Oxygen evolution Oxide chemistry.chemical_element 02 engineering and technology General Chemistry 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences 0104 chemical sciences Catalysis Biomaterials chemistry.chemical_compound Chemical engineering chemistry Transition metal Maschinenbau General Materials Science Metal-organic framework 0210 nano-technology Carbon Biotechnology Covalent organic framework |
Popis: | Oxygen evolution reaction (OER) is expected to be of great importance for the future energy conversion and storage in form of hydrogen by water electrolysis. Besides the traditional noble-metal or transition metal oxide-based catalysts, carbonaceous electrocatalysts are of great interest due to their huge structural and compositional variety and unrestricted abundance. This review provides a summary of recent advances in the field of carbon-based OER catalysts ranging from "pure" or unintentionally doped carbon allotropes over heteroatom-doped carbonaceous materials and carbon/transition metal compounds to metal oxide composites where the role of carbon is mainly assigned to be a conductive support. Furthermore, the review discusses the recent developments in the field of ordered carbon framework structures (metal organic framework and covalent organic framework structures) that potentially allow a rational design of heteroatom-doped 3D porous structures with defined composition and spatial arrangement of doping atoms to deepen the understanding on the OER mechanism on carbonaceous structures in the future. Besides introducing the structural and compositional origin of electrochemical activity, the review discusses the mechanism of the catalytic activity of carbonaceous materials, their stability under OER conditions, and potential synergistic effects in combination with metal (or metal oxide) co-catalysts. |
Databáze: | OpenAIRE |
Externí odkaz: |