Why Delannoy numbers?

Autor: Sylviane R. Schwer, Cyril Banderier
Přispěvatelé: Laboratoire d'Informatique de Paris-Nord (LIPN), Université Sorbonne Paris Cité (USPC)-Institut Galilée-Université Paris 13 (UP13)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2005
Předmět:
FOS: Computer and information sciences
Statistics and Probability
History and Overview (math.HO)
[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]
Mathematics - Statistics Theory
Statistics Theory (math.ST)
0102 computer and information sciences
01 natural sciences
Combinatorics
Computer Science - Computer Science and Game Theory
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

Lattice (order)
Computer Science - Data Structures and Algorithms
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
FOS: Mathematics
Mathematics - Combinatorics
Data Structures and Algorithms (cs.DS)
Quantitative Biology - Genomics
0101 mathematics
Mathematics
Genomics (q-bio.GN)
[INFO.INFO-GT]Computer Science [cs]/Computer Science and Game Theory [cs.GT]
Mathematics - History and Overview
Applied Mathematics
Probability (math.PR)
010102 general mathematics
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
010201 computation theory & mathematics
FOS: Biological sciences
[MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO]
Combinatorics (math.CO)
Statistics
Probability and Uncertainty

Mathematics - Probability
Computer Science and Game Theory (cs.GT)
Zdroj: Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference, Elsevier, 2005, 135 (1), pp.40-54
ISSN: 0378-3758
1873-1171
DOI: 10.1016/j.jspi.2005.02.004
Popis: This article is not a research paper, but a little note on the history of combinatorics: We present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers to the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. These numbers appear in probabilistic game theory, alignments of DNA sequences, tiling problems, temporal representation models, analysis of algorithms and combinatorial structures.
Presented to the conference "Lattice Paths Combinatorics and Discrete Distributions" (Athens, June 5-7, 2002) and to appear in the Journal of Statistical Planning and Inferences
Databáze: OpenAIRE