A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth
Autor: | Boyan Sirakov, Delia Schiera, Gabrielle Nornberg |
---|---|
Rok vydání: | 2020 |
Předmět: |
Quadratic growth
Physics Mathematics::Commutative Algebra Applied Mathematics Scalar (mathematics) Mathematics::Analysis of PDEs Multiplicity (mathematics) Lambda Omega Combinatorics Mathematics::Group Theory symbols.namesake Mathematics - Analysis of PDEs Bounded function Dirichlet boundary condition FOS: Mathematics symbols Discrete Mathematics and Combinatorics OPERADORES NÃO LINEARES Natural gradient Analysis Analysis of PDEs (math.AP) |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
ISSN: | 1553-5231 |
Popis: | We consider fully nonlinear uniformly elliptic cooperative systems with quadratic growth in the gradient, such as $$ -F_i(x, u_i, Du_i, D^2 u_i)- \langle M_i(x)D u_i, D u_i \rangle =\lambda c_{i1}(x) u_1 + \cdots + \lambda c_{in}(x) u_n +h_i(x), $$ for $i=1,\cdots,n$, in a bounded $C^{1,1}$ domain $\Omega\subset \mathbb{R}^N$ with Dirichlet boundary conditions; here $n\geq 1$, $\lambda \in\mathbb{R}$, $c_{ij},\, h_i \in L^\infty(\Omega)$, $c_{ij}\geq 0$, $M_i$ satisfies $0 Comment: 24 pages |
Databáze: | OpenAIRE |
Externí odkaz: |