Error estimates for iterative algorithms for minimizing regularized quadratic subproblems

Autor: Nicholas I. M. Gould, Valeria Simoncini
Přispěvatelé: Gould N.I.M., Simoncini V.
Rok vydání: 2019
Předmět:
Zdroj: Optimization methods & software
35 (2019): 304–328. doi:10.1080/10556788.2019.1670177
info:cnr-pdr/source/autori:N.I. Gould and V. Simoncini/titolo:Error estimates for iterative algorithms for minimizing regularized quadratic subproblems/doi:10.1080%2F10556788.2019.1670177/rivista:Optimization methods & software (Print)/anno:2019/pagina_da:304/pagina_a:328/intervallo_pagine:304–328/volume:35
ISSN: 1029-4937
1055-6788
DOI: 10.1080/10556788.2019.1670177
Popis: We derive bounds for the objective errors and gradient residuals when finding approximations to the solution of common regularized quadratic optimization problems within evolving Krylov spaces. These provide upper bounds on the number of iterations required to achieve a given stated accuracy. We illustrate the quality of our bounds on given test examples.
Databáze: OpenAIRE