Comparison of fastness of the convergence among Krasnoselskij, Mann, and Ishikawa iterations in arbitrary real Banach spaces
Autor: | Knvv Vara Prasad, G. V. R. Babu |
---|---|
Rok vydání: | 2006 |
Předmět: |
Discrete mathematics
T57-57.97 QA299.6-433 Applied mathematics. Quantitative methods Applied Mathematics Regular polygon Banach space Fixed point Lipschitz continuity Differential geometry TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY Bounded function Convergence (routing) Geometry and Topology Constant (mathematics) Analysis Mathematics |
Zdroj: | Fixed Point Theory and Applications, Vol 2006 (2007) |
ISSN: | 1687-1812 1687-1820 |
Popis: | Let be an arbitrary real Banach space and a nonempty, closed, convex (not necessarily bounded) subset of . If is a member of the class of Lipschitz, strongly pseudocontractive maps with Lipschitz constant , then it is shown that to each Mann iteration there is a Krasnosleskij iteration which converges faster than the Mann iteration. It is also shown that the Mann iteration converges faster than the Ishikawa iteration to the fixed point of . |
Databáze: | OpenAIRE |
Externí odkaz: |