A universal gene expression system for fungi
Autor: | Merja Penttilä, Outi Koivistoinen, Joosu Kuivanen, Lauri Reuter, Mari Valkonen, Dominik Mojzita, Anssi Rantasalo, Jussi Jäntti, Annakarin Korppoo, Christopher P. Landowski |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
030106 microbiology Genetic Vectors Gene Expression Computational biology Saccharomyces cerevisiae Biology Genome 03 medical and health sciences Genome editing Gene Expression Regulation Fungal Gene expression Genetics Cloning Molecular Gene Regulation of gene expression Trichoderma Fungi ta1182 Promoter Yeast Recombinant Proteins 030104 developmental biology Methods Online Synthetic Biology Aspergillus niger Candidate Disease Gene Genetic Engineering |
Zdroj: | Nucleic Acids Research Rantasalo, A, Landowski, C P, Kuivanen, J, Korppoo, A, Reuter, L, Koivistoinen, O, Valkonen, M, Penttilä, M, Jäntti, J & Mojzita, D 2018, ' A universal gene expression system for fungi ', Nucleic Acids Research, vol. 46, no. 18, e111, pp. e111 . https://doi.org/10.1093/nar/gky558 |
ISSN: | 0305-1048 |
DOI: | 10.1093/nar/gky558 |
Popis: | Biotechnological production of fuels, chemicals and proteins is dependent on efficient production systems, typically genetically engineered microorganisms. New genome editing methods are making it increasingly easy to introduce new genes and functionalities in a broad range of organisms. However, engineering of all these organisms is hampered by the lack of suitable gene expression tools. Here, we describe a synthetic expression system (SES) that is functional in a broad spectrum of fungal species without the need for host-dependent optimization. The SES consists of two expression cassettes, the first providing a weak, but constitutive level of a synthetic transcription factor (sTF), and the second enabling strong, at will tunable expression of the target gene via an sTF-dependent promoter. We validated the SES functionality in six yeast and two filamentous fungi species in which high (levels beyond organism-specific promoters) as well as adjustable expression levels of heterologous and native genes was demonstrated. The SES is an unprecedentedly broadly functional gene expression regulation method that enables significantly improved engineering of fungi. Importantly, the SES system makes it possible to take in use novel eukaryotic microbes for basic research and various biotechnological applications. |
Databáze: | OpenAIRE |
Externí odkaz: |