Popis: |
Growing volumes of construction result in the rising demand for high-quality wall materials and products, growing relevance of availability of resource and raw-material base of natural and industrial products for the construction industry. Structural, physical and mechanical qualities of these products can be improved through systematical selection of compositions based on natural and raw materials, including nano-scale products. The goal of this paper is to provide rationale for structure formation mechanisms of multicomponent materials (silica-lime, silicate, cement materials), with the possibility of using nano-scale products in their production. The primary mechanism of directed structure formation at the interface boundaries of binders are nano- and ultra-disperse particles with high absorption and adhesion properties, which are primarily intended to strengthen the contact area (one of the key structural units of multicomponent binders). The knowledge of genesis, chemical, mineralogical, and phase compositions, as well as specific features of formation of nano-technological raw materials, enables optimization of construction product properties. Using the small-angle neutron scattering method, we identified granulometric and surface properties of a series of nano-technological products (binary and sludge) and materials where such products are used, which enabled us to design optimal mixture compositions and parameters of pressing operations. |