Electrical behaviour of a silicone elastomer under simulated space environment

Autor: Sabine Dagras, Aurélien Roggero, Virginie Rejsek-Riba, Thierry Paulmier, Denis Payan, N. Balcon, Claire Tonon, Eric Dantras
Přispěvatelé: Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), ONERA - The French Aerospace Lab [Toulouse], ONERA, Airbus Defence and Space [Toulouse], Centre National d'Études Spatiales [Toulouse] (CNES), Airbus (FRANCE), Centre National d'Études Spatiales - CNES (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Office National d'Etudes et Recherches Aérospatiales - ONERA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics, IOP Publishing, 2015, 48 (13), p. 135302 (10 p.). ⟨10.1088/0022-3727/48/13/135302⟩
ISSN: 0022-3727
1361-6463
DOI: 10.1088/0022-3727/48/13/135302⟩
Popis: International audience; The electrical behavior of a space-used silicone elastomer was characterized using surface potential decay and dynamic dielectric spectroscopy techniques. In both cases, the dielectric manifestation of the glass transition (dipole orientation) and a charge transport phenomenon were observed. An unexpected linear increase of the surface potential with temperature was observed around Tg in thermally-stimulated potential decay experiments, due to molecular mobility limiting dipolar orientation in one hand, and 3D thermal expansion reducing the materials capacitance in the other hand. At higher temperatures, the charge transport process, believed to be thermally activated electron hopping with an activation energy of about 0.4eV, was studied with and without the silica and iron oxide fillers present in the commercial material. These fillers were found to play a preponderant role in the low-frequency electrical conductivity of this silicone elastomer, probably through a Maxwell–Wagner–Sillars relaxation phenomenon.
Databáze: OpenAIRE