Spectral Triples and the Super-Virasoro Algebra

Autor: Roberto Longo, Sebastiano Carpi, Robin Hillier, Yasuyuki Kawahigashi
Rok vydání: 2010
Předmět:
Operator Algebras
Quantum Field Theory
High Energy Physics - Theory
Pure mathematics
46L87
FOS: Physical sciences
Super Virasoro algebra
Dirac operator
81T05
01 natural sciences
Unitary state
17B68
High Energy Physics::Theory
symbols.namesake
Settore MAT/05 - Analisi Matematica
81T40
Mathematics - Quantum Algebra
0103 physical sciences
FOS: Mathematics
Quantum Algebra (math.QA)
0101 mathematics
Algebra over a field
Operator Algebras (math.OA)
Representation (mathematics)
Mathematical Physics
Mathematics
Conformal Field Theory
010102 general mathematics
Mathematics - Operator Algebras
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
16. Peace & justice
Net (mathematics)
Positive energy
Noncommutative Geometry
High Energy Physics - Theory (hep-th)
Conformal Field Theory
Noncommutative Geometry
Quantum Field Theory

symbols
010307 mathematical physics
Central charge
Zdroj: Communications in Mathematical Physics
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-009-0982-2
Popis: We construct infinite dimensional spectral triples associated with representations of the super-Virasoro algebra. In particular the irreducible, unitary positive energy representation of the Ramond algebra with central charge c and minimal lowest weight h=c/24 is graded and gives rise to a net of even theta-summable spectral triples with non-zero Fredholm index. The irreducible unitary positive energy representations of the Neveu-Schwarz algebra give rise to nets of even theta-summable generalised spectral triples where there is no Dirac operator but only a superderivation.
27 pages; v2: a comment concerning the difficulty in defining cyclic cocycles in the NS case have been added
Databáze: OpenAIRE