Strategies developed by bacteria and virus for protection from the human complement system

Autor: Anna M. Blom
Rok vydání: 2004
Předmět:
Zdroj: Scandinavian Journal of Clinical and Laboratory Investigation. 64:479-496
ISSN: 1502-7686
0036-5513
DOI: 10.1080/00365510410002904
Popis: The complement system is an important part of innate immunity providing immediate protection against pathogens without a need for previous exposure. Its importance is clearly shown by the fact that patients lacking complement components suffer from fulminant and recurring infections. Complement is an explosive cascade, and in order to control it there are inhibitors present on every human cell and also circulating in blood. However, many infectious agents have developed strategies to prevent clearance and destruction by complement. Some pathogens simply hijack the host's complement inhibitors, while others are able to produce their own homologues of human inhibitors. Knowledge of these mechanisms on a molecular level may aid development of vaccines and novel therapeutic strategies that would be more specific than the use of antibiotics that, apart from causing resistance problems, also affect the normal flora, the outcome of which could be devastating. In this study the structural requirements and functional consequences of interactions between the major soluble inhibitor of complement C4b-binding protein and Neisseria gonorrhoeae, Bordetella pertussis, Streptococcus pyogenes, Escherichia coli K1, Moraxella catarrhalis and Candida albicans are described. Furthermore, a novel inhibitor produced by Kaposi's sarcoma-associated herpesvirus is identified and characterized in detail: KCP. It is shown that KCP inhibits classical C3-convertase and presents activated complement factors C4b and C3b for destruction by a serine proteinase, factor I. Using molecular modelling and site-directed mutagenesis, it was possible to localize sites on the surface of KCP required for complement inhibition and it is concluded that KCP uses molecular mechanisms identical to human inhibitors.
Databáze: OpenAIRE