The role of fluctuations and stress on the effective viscosity of cell aggregates
Autor: | Boudewijn van der Sanden, Philippe Marmottant, Jean-Claude Vial, François Graner, Jean-Paul Rieu, Abbas Mgharbel, Benjamin Audren, Athanasius F. M. Marée, Hélène Delanoë-Ayari, Jos Käfer |
---|---|
Přispěvatelé: | Laboratoire de Spectrométrie Physique (LSP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de la Matière Condensée et Nanostructures (LPMCN), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), INSERM U836, équipe 6, Rayonnement synchrotron et recherche médicale, ANTE-INSERM U836, équipe 7, Nanomédecine et cerveau, Grenoble Institut des Neurosciences (GIN), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM), Theoretical Biology/Bioinformatics, Utrecht University [Utrecht], Génétique du Développement et Cancer, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Issartel, Jean-Paul, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Curie [Paris]-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2009 |
Předmět: |
MESH: Emulsions
Compressive Strength Constitutive equation MESH: Cell Cycle [SPI.MECA.MEFL] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] 01 natural sciences [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] Surface tension Mice MESH: Cell Aggregation Stress relaxation MESH: Animals [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] MESH: Biomechanics MESH: Cell Size Cell Aggregation MESH: Cells 0303 health sciences MESH: Stress Mechanical Multidisciplinary Viscosity Cell Cycle Mechanics Cell aggregation Biomechanical Phenomena Compressive strength Physical Sciences Emulsions [SDV.IB]Life Sciences [q-bio]/Bioengineering MESH: Cell Line Tumor Materials science Cells MESH: Viscosity Nanotechnology 03 medical and health sciences Cell Line Tumor surface tension 0103 physical sciences cellular Potts model Animals [PHYS.MECA.MEFL] Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] Elasticity (economics) 010306 general physics MESH: Mice Cell Size 030304 developmental biology [SDV.IB] Life Sciences [q-bio]/Bioengineering statistical model Cellular Potts model MESH: Compressive Strength Apparent viscosity Elasticity MESH: Elasticity Stress Mechanical |
Zdroj: | Proceedings of the National Academy of Sciences of the United States of America Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (41), pp.17271-5. ⟨10.1073/pnas.0902085106⟩ Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2009, 106 (41), pp.17271-5. ⟨10.1073/pnas.0902085106⟩ |
ISSN: | 1091-6490 0027-8424 |
DOI: | 10.1073/pnas.0902085106 |
Popis: | Cell aggregates are a tool for in vitro studies of morphogenesis, cancer invasion, and tissue engineering. They respond to mechanical forces as a complex rather than simple liquid. To change an aggregate's shape, cells have to overcome energy barriers. If cell shape fluctuations are active enough, the aggregate spontaneously relaxes stresses (“fluctuation-induced flow”). If not, changing the aggregate's shape requires a sufficiently large applied stress (“stress-induced flow”). To capture this distinction, we develop a mechanical model of aggregates based on their cellular structure. At stress lower than a characteristic stress τ*, the aggregate as a whole flows with an apparent viscosity η*, and at higher stress it is a shear-thinning fluid. An increasing cell–cell tension results in a higher η* (and thus a slower stress relaxation time t c ). Our constitutive equation fits experiments of aggregate shape relaxation after compression or decompression in which irreversibility can be measured; we find t c of the order of 5 h for F9 cell lines. Predictions also match numerical simulations of cell geometry and fluctuations. We discuss the deviations from liquid behavior, the possible overestimation of surface tension in parallel-plate compression measurements, and the role of measurement duration. |
Databáze: | OpenAIRE |
Externí odkaz: |