The role of fluctuations and stress on the effective viscosity of cell aggregates

Autor: Boudewijn van der Sanden, Philippe Marmottant, Jean-Claude Vial, François Graner, Jean-Paul Rieu, Abbas Mgharbel, Benjamin Audren, Athanasius F. M. Marée, Hélène Delanoë-Ayari, Jos Käfer
Přispěvatelé: Laboratoire de Spectrométrie Physique (LSP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de la Matière Condensée et Nanostructures (LPMCN), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), INSERM U836, équipe 6, Rayonnement synchrotron et recherche médicale, ANTE-INSERM U836, équipe 7, Nanomédecine et cerveau, Grenoble Institut des Neurosciences (GIN), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM), Theoretical Biology/Bioinformatics, Utrecht University [Utrecht], Génétique du Développement et Cancer, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Issartel, Jean-Paul, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Curie [Paris]-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2009
Předmět:
MESH: Emulsions
Compressive Strength
Constitutive equation
MESH: Cell Cycle
[SPI.MECA.MEFL] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
01 natural sciences
[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]
Surface tension
Mice
MESH: Cell Aggregation
Stress relaxation
MESH: Animals
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
MESH: Biomechanics
MESH: Cell Size
Cell Aggregation
MESH: Cells
0303 health sciences
MESH: Stress
Mechanical

Multidisciplinary
Viscosity
Cell Cycle
Mechanics
Cell aggregation
Biomechanical Phenomena
Compressive strength
Physical Sciences
Emulsions
[SDV.IB]Life Sciences [q-bio]/Bioengineering
MESH: Cell Line
Tumor

Materials science
Cells
MESH: Viscosity
Nanotechnology
03 medical and health sciences
Cell Line
Tumor

surface tension
0103 physical sciences
cellular Potts model
Animals
[PHYS.MECA.MEFL] Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Elasticity (economics)
010306 general physics
MESH: Mice
Cell Size
030304 developmental biology
[SDV.IB] Life Sciences [q-bio]/Bioengineering
statistical model
Cellular Potts model
MESH: Compressive Strength
Apparent viscosity
Elasticity
MESH: Elasticity
Stress
Mechanical
Zdroj: Proceedings of the National Academy of Sciences of the United States of America
Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (41), pp.17271-5. ⟨10.1073/pnas.0902085106⟩
Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2009, 106 (41), pp.17271-5. ⟨10.1073/pnas.0902085106⟩
ISSN: 1091-6490
0027-8424
DOI: 10.1073/pnas.0902085106
Popis: Cell aggregates are a tool for in vitro studies of morphogenesis, cancer invasion, and tissue engineering. They respond to mechanical forces as a complex rather than simple liquid. To change an aggregate's shape, cells have to overcome energy barriers. If cell shape fluctuations are active enough, the aggregate spontaneously relaxes stresses (“fluctuation-induced flow”). If not, changing the aggregate's shape requires a sufficiently large applied stress (“stress-induced flow”). To capture this distinction, we develop a mechanical model of aggregates based on their cellular structure. At stress lower than a characteristic stress τ*, the aggregate as a whole flows with an apparent viscosity η*, and at higher stress it is a shear-thinning fluid. An increasing cell–cell tension results in a higher η* (and thus a slower stress relaxation time t c ). Our constitutive equation fits experiments of aggregate shape relaxation after compression or decompression in which irreversibility can be measured; we find t c of the order of 5 h for F9 cell lines. Predictions also match numerical simulations of cell geometry and fluctuations. We discuss the deviations from liquid behavior, the possible overestimation of surface tension in parallel-plate compression measurements, and the role of measurement duration.
Databáze: OpenAIRE