Electronic structure and quantum transport in twisted bilayer graphene with resonant scatterers

Autor: Didier Mayou, Omid Faizy Namarvar, Ahmed Missaoui, Guy Trambly de Laissardière, Laurence Magaud
Přispěvatelé: XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Université de Tunis El Manar (UTM), Systèmes hybrides de basse dimensionnalité (HYBRID), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Optique et Matériaux (OPTIMA), Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Physical Review B
Physical Review B, American Physical Society, 2020, 101 (24), pp.245407. ⟨10.1103/PhysRevB.101.245407⟩
ISSN: 2469-9950
2469-9969
DOI: 10.1103/PhysRevB.101.245407⟩
Popis: Stacking layered materials revealed to be a very powerful method to tailor their electronic properties. It has indeed been theoretically and experimentally shown that twisted bilayers of graphene (tBLG) with a rotation angle $\ensuremath{\theta}$, forming a Moir\'e pattern, confine electrons in a tunable way as a function of $\ensuremath{\theta}$. Here, we study electronic structure and transport in tBLG using tight-binding numerical calculations in commensurate twisted bilayer structures and a pertubative continuous theory, which is valid for not-too-small angles ($\ensuremath{\theta}g\ensuremath{\sim}{2}^{\ensuremath{\circ}}$). These two approaches allow us to understand the effect of $\ensuremath{\theta}$ on the local density of states, the electron lifetime due to disorder, the DC conductivity, and the conductivity quantum correction due to multiple scattering effects. We distinguish the cases where disorder is equally distributed over two layers or only one layer. When only one layer is disordered, diffusion properties depend strongly on $\ensuremath{\theta}$, thus showing the effect of Moir\'e electronic localization at intermediate angles $\ensuremath{\theta}, \ensuremath{\sim}{2}^{\ensuremath{\circ}}l\ensuremath{\theta}l\ensuremath{\sim}{20}^{\ensuremath{\circ}}$.
Databáze: OpenAIRE