Electronic structure and quantum transport in twisted bilayer graphene with resonant scatterers
Autor: | Didier Mayou, Omid Faizy Namarvar, Ahmed Missaoui, Guy Trambly de Laissardière, Laurence Magaud |
---|---|
Přispěvatelé: | XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Université de Tunis El Manar (UTM), Systèmes hybrides de basse dimensionnalité (HYBRID), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Optique et Matériaux (OPTIMA), Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Physics
[PHYS]Physics [physics] Local density of states Condensed Matter - Mesoscale and Nanoscale Physics Condensed matter physics Scattering Graphene Bilayer Stacking FOS: Physical sciences 02 engineering and technology Electron Electronic structure 021001 nanoscience & nanotechnology 01 natural sciences law.invention law Mesoscale and Nanoscale Physics (cond-mat.mes-hall) 0103 physical sciences 010306 general physics 0210 nano-technology Bilayer graphene |
Zdroj: | Physical Review B Physical Review B, American Physical Society, 2020, 101 (24), pp.245407. ⟨10.1103/PhysRevB.101.245407⟩ |
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.101.245407⟩ |
Popis: | Stacking layered materials revealed to be a very powerful method to tailor their electronic properties. It has indeed been theoretically and experimentally shown that twisted bilayers of graphene (tBLG) with a rotation angle $\ensuremath{\theta}$, forming a Moir\'e pattern, confine electrons in a tunable way as a function of $\ensuremath{\theta}$. Here, we study electronic structure and transport in tBLG using tight-binding numerical calculations in commensurate twisted bilayer structures and a pertubative continuous theory, which is valid for not-too-small angles ($\ensuremath{\theta}g\ensuremath{\sim}{2}^{\ensuremath{\circ}}$). These two approaches allow us to understand the effect of $\ensuremath{\theta}$ on the local density of states, the electron lifetime due to disorder, the DC conductivity, and the conductivity quantum correction due to multiple scattering effects. We distinguish the cases where disorder is equally distributed over two layers or only one layer. When only one layer is disordered, diffusion properties depend strongly on $\ensuremath{\theta}$, thus showing the effect of Moir\'e electronic localization at intermediate angles $\ensuremath{\theta}, \ensuremath{\sim}{2}^{\ensuremath{\circ}}l\ensuremath{\theta}l\ensuremath{\sim}{20}^{\ensuremath{\circ}}$. |
Databáze: | OpenAIRE |
Externí odkaz: |