Fractional Chiral Hinge Insulator

Autor: Nicolas Regnault, B. Andrei Bernevig, Ana Hudomal, Norbert Schuch, Anna Hackenbroich
Přispěvatelé: Théorie de la Matière Condensée, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Université de Paris (UP)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Université de Paris (UP)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Phys.Rev.B
Phys.Rev.B, 2021, 103 (16), pp.161110. ⟨10.1103/PhysRevB.103.L161110⟩
Physical Review B
ISSN: 2469-9950
DOI: 10.1103/PhysRevB.103.L161110⟩
Popis: We propose and study a wave function describing an interacting three-dimensional fractional chiral hinge insulator (FCHI) constructed by Gutzwiller projection of two non-interacting second order topological insulators with chiral hinge modes at half filling. We use large-scale variational Monte Carlo computations to characterize the model states via the entanglement entropy and charge-spin-fluctuations. We show that the FCHI possesses fractional chiral hinge modes characterized by a central charge $c=1$ and Luttinger parameter $K=1/2$, like the edge modes of a Laughlin $1/2$ state. By changing the boundary conditions for the underlying fermions, we investigate the topological degeneracy of the FCHI. Within the range of the numerically accessible system sizes, we observe a non-trivial topological degeneracy. A more numerically pristine characterization of the bulk topology is provided by the topological entanglement entropy (TEE) correction to the area law. While our computations indicate a vanishing bulk TEE, we show that the gapped surfaces host a two-dimensional topological order with a TEE per surface compatible with half that of a Laughlin $1/2$ state, a value that cannot be obtained from topological quantum field theory.
7+21 pages, 3+14 figures
Databáze: OpenAIRE