Uniqueness of Coxeter structures on Kac–Moody algebras

Autor: Valerio Toledano Laredo, Andrea Appel
Rok vydání: 2019
Předmět:
Zdroj: Advances in Mathematics. 347:1-104
ISSN: 0001-8708
DOI: 10.1016/j.aim.2019.02.022
Popis: Let g be a symmetrisable Kac-Moody algebra, and U_h(g) the corresponding quantum group. We showed in arXiv:1610.09744 and arXiv:1610.09741 that the braided quasi-Coxeter structure on integrable, category O representations of U_h(g) which underlies the R-matrix actions arising from the Levi subalgebras of U_h(g) and the quantum Weyl group action of the generalised braid group B_g can be transferred to integrable, category O representations of g. We prove in this paper that, up to unique equivalence, there is a unique such structure on the latter category with prescribed restriction functors, R--matrices, and local monodromies. This extends, simplifies and strengthens a similar result of the second author valid when g is semisimple, and is used in arXiv:1512.03041 to describe the monodromy of the rational Casimir connection of g in terms of the quantum Weyl group operators of U_h(g). Our main tool is a refinement of Enriquez's universal algebras, which is adapted to the PROP describing a Lie bialgebra graded by the non-negative roots of g.
Expanded Introduction and Sec. 5 to discuss convolution product (5.11), cosimplicial structure on basis elements (5.13) and module structure on coinvariants (5.15). Minor revisions in Sec. 7.1 (gradings), 7.4 (deformation DY modules), 9.7 (exposition), 15.7 (Drinfeld double) and 15.15 (rigidity for diagrammatic KM algebras). Final version, to appear in Adv. Math. 81 pages
Databáze: OpenAIRE