Parameter transferability under changing climate: case study with a land surface model in the Durance watershed, France

Autor: N. Le Moine, Pierre Brigode, Agnès Ducharne, C. Magand
Přispěvatelé: Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), This work has been carried out in the framework of the project R 2 D 2 -2050 supported by the programme 'Gestion et Impact du Changement Climatique' of the Ministère de l’Ecologie, du Développement Durable et de l’Energie (France).Claire Magand was supported by a grant from l’Agence de l’Eau Rhône Méditerranée Corse., Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Rok vydání: 2015
Předmět:
Zdroj: Hydrological Sciences Journal
Hydrological Sciences Journal, 2015, 60, pp.1408-1423. ⟨10.1080/02626667.2014.993643⟩
Hydrological Sciences Journal, Taylor & Francis, 2015, 60, pp.1408-1423. ⟨10.1080/02626667.2014.993643⟩
ISSN: 2150-3435
0262-6667
DOI: 10.1080/02626667.2014.993643
Popis: International audience; In physically-based land surface models, the parameters can all be prescribed a priori but calibration can be used to enhance the realism of the simulations in well instrumented domains. In such a case, the transferability of calibrated parameters under non-stationary conditions needs to be addressed, especially in the context of climate change. To this end, we used the Catchment Land Surface Model (CLSM) in the Upper Durance watershed located in the French Alps, which experienced a significant increase in temperature over the last century. The CLSM is forced by a 50-year meteorological dataset of good quality. Four parameters of the CLSM (one related to snow processes and three to soil properties) are calibrated against discharge observations with a multi-objective algorithm. First, the robustness of the CLSM parameterizations is tested by the Differential Split Sample Test (DSST). The simulations show good performances over a wide range of retrospective climatic conditions, except when the parameters are calibrated over a period with a large contribution of snowmelt to annual mean discharge. Then, the use of a climate change scenario reveals that the parameterizations of soil moisture processes in the CLSM are responsible for an increasing dispersion among simulations when facing dry and warm conditions. However, the differences between the simulated changes of river discharge remain very small. This work shows that calibration conveys some uncertainties, but they are moderate in the studied case, and pertain to the most conceptual parameterizations of this physically-based model.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje