High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task
Autor: | Milan Brázdil, Robert Roman, Pavel Daniel, Daniel Joel Shaw, Jan Cimbalnik, Martin Pail, Jan Chrastina |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Adult
Male 0301 basic medicine Drug Resistant Epilepsy Science Neuropsychological Tests Hippocampal formation Hippocampus behavioral disciplines and activities Article Task (project management) Non epileptic Young Adult 03 medical and health sciences Epilepsy Cognition 0302 clinical medicine mental disorders Humans Medicine Hippocampus (mythology) Relative amplitude Brain function Multidisciplinary business.industry Electroencephalography Middle Aged medicine.disease Brain Waves Electrodes Implanted nervous system diseases 030104 developmental biology Epilepsy Temporal Lobe nervous system Female business Neuroscience 030217 neurology & neurosurgery psychological phenomena and processes |
Zdroj: | Scientific Reports, Vol 10, Iss 1, Pp 1-12 (2020) Scientific Reports |
ISSN: | 2045-2322 |
Popis: | Hippocampal high-frequency electrographic activity (HFOs) represents one of the major discoveries not only in epilepsy research but also in cognitive science over the past few decades. A fundamental challenge, however, has been the fact that physiological HFOs associated with normal brain function overlap in frequency with pathological HFOs. We investigated the impact of a cognitive task on HFOs with the aim of improving differentiation between epileptic and non-epileptic hippocampi in humans. Hippocampal activity was recorded with depth electrodes in 15 patients with focal epilepsy during a resting period and subsequently during a cognitive task. HFOs in ripple and fast ripple frequency ranges were evaluated in both conditions, and their rate, spectral entropy, relative amplitude and duration were compared in epileptic and non-epileptic hippocampi. The similarity of HFOs properties recorded at rest in epileptic and non-epileptic hippocampi suggests that they cannot be used alone to distinguish between hippocampi. However, both ripples and fast ripples were observed with higher rates, higher relative amplitudes and longer durations at rest as well as during a cognitive task in epileptic compared with non-epileptic hippocampi. Moreover, during a cognitive task, significant reductions of HFOs rates were found in epileptic hippocampi. These reductions were not observed in non-epileptic hippocampi. Our results indicate that although both hippocampi generate HFOs with similar features that probably reflect non-pathological phenomena, it is possible to differentiate between epileptic and non-epileptic hippocampi using a simple odd-ball task. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |