Hif-1α Deletion May Lead to Adverse Treatment Effect in a Mouse Model of MLL-AF9-Driven AML
Autor: | Shamit Soneji, David Bryder, Talia Velasco-Hernandez, Eva Erlandsson, Isabel Hidalgo, Jörg Cammenga |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
medicine.medical_specialty Oncogene Proteins Fusion medicine.medical_treatment mouse model HIF-1α Antineoplastic Agents Biology acute myeloid leukemia chemotherapy Biochemistry Article 03 medical and health sciences Mice 0302 clinical medicine Cancer stem cell Internal medicine hemic and lymphatic diseases Conditional gene knockout Genetics medicine Animals Protein Interaction Maps lcsh:QH301-705.5 Sensitization Myeloid Progenitor Cells Chemotherapy lcsh:R5-920 Hematology hypoxia single-cell transcriptional analysis Myeloid leukemia Cell Biology Chemotherapy regimen 3. Good health Leukemia Myeloid Acute 030104 developmental biology medicine.anatomical_structure lcsh:Biology (General) Cancer research Hypoxia-Inducible Factor 1 Stem cell Single-Cell Analysis lcsh:Medicine (General) 030217 neurology & neurosurgery Gene Deletion Developmental Biology |
Zdroj: | Stem Cell Reports, Vol 12, Iss 1, Pp 112-121 (2019) Stem Cell Reports |
ISSN: | 2213-6711 |
Popis: | Summary Relapse of acute myeloid leukemia (AML) remains a significant clinical challenge due to limited therapeutic options and poor prognosis. Leukemic stem cells (LSCs) are the cellular units responsible for relapse in AML, and strategies that target LSCs are thus critical. One proposed potential strategy to this end is to break the quiescent state of LSCs, thereby sensitizing LSCs to conventional cytostatics. The hypoxia-inducible factor (HIF) pathway is a main driver of cellular quiescence and a potential therapeutic target, with precedence from both solid cancers and leukemias. Here, we used a conditional knockout Hif-1α mouse model together with a standard chemotherapy regimen to evaluate LSC targeting in AML. Contrary to expectation, our studies revealed that Hif-1α-deleted-leukemias displayed a faster disease progression after chemotherapy. Our studies thereby challenge the general notion of cancer stem cell sensitization by inhibition of the HIF pathway, and warrant caution when applying HIF inhibition in combination with chemotherapy in AML. Graphical Abstract Highlights • Deletion of Hif-1α accelerates the progression of chemotherapy-treated MLL-AF9-AML • Deletion of Hif-1α does not decrease LSC frequency after chemotherapy • Chemotherapy targets more mature cells indicated by transcriptional analysis • Hif-1α deletion affects few transcriptional pathways in AML cells In this article, Bryder, Velasco-Hernandez and colleagues show that the combination of chemotherapy and Hif-1α deletion in a murine model of MLL-AF9-AML leads to a faster progression of the disease without altering LSCs frequency. Single-cell transcriptional analysis indicates that Hif-1α deletion leads to few transcriptional modifications. |
Databáze: | OpenAIRE |
Externí odkaz: |