Characterization of wastewater treatment plant microbial communities and the effects of carbon sources on diversity in laboratory models
Autor: | Cindy H. Wu, Mary E. Singer, Adam P. Arkin, Francine C. Reid, Sangwon Lee, Daniel R. Tarjan, Terry C. Hazen, Jil T. Geller, Tamas Torok, Nathan J. Hillson |
---|---|
Přispěvatelé: | Johnson, Eric A |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
General Science & Technology
Agricultural Biotechnology Applied Microbiology Microbial Consortia lcsh:Medicine Industrial Ecology Wastewater Actinobacteria Microbial Ecology Water Purification Industrial Microbiology Environmental Biotechnology Bioreactor Aeromonadaceae Aerated lagoon Waste Water lcsh:Science Multidisciplinary biology Ecology Bacteria Genetically Modified Organisms lcsh:R Bacteroidetes Biology and Life Sciences Agriculture Plants biology.organism_classification Carbon Environmental chemistry Sewage treatment lcsh:Q Synthetic Biology Proteobacteria Genetic Engineering Water Microbiology Research Article Biotechnology |
Zdroj: | Lee, S; Geller, JT; Torok, T; Wu, CH; Singer, M; Reid, FC; et al.(2014). Characterization of wastewater treatment plant microbial communities and the effects of carbon sources on diversity in laboratory models. PLoS ONE, 9(8). doi: 10.1371/journal.pone.0105689. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/3h08n2qx PLoS ONE PloS one, vol 9, iss 8 PLoS ONE, Vol 9, Iss 8, p e105689 (2014) |
DOI: | 10.1371/journal.pone.0105689. |
Popis: | We are developing a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP). As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points. Having established a baseline for community composition, we investigated how the community changed when propagated in the laboratory, including cell culture media conditions that could provide selective pressure in future studies. Specifically, using PhyloChip 16S-rRNA-gene targeting microarrays, we compared the compositions of sampled communities to those of inocula propagated in the laboratory in simulated wastewater conditionally amended with various carbon sources (glucose, chloroacetate, D-threonine) or the ionic liquid 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl). Proteobacteria , Bacteroidetes, and Actinobacteria were predominant in both aeration basin and laboratory-cultured communities. Laboratory-cultured communities were enriched in γ-Proteobacteria. Enterobacteriaceae, and Aeromonadaceae were enriched by glucose, Pseudomonadaceae by chloroacetate and D-threonine, and Burkholderiacea by high (50 mM) concentrations of chloroacetate. Microbial communities cultured with chloroacetate and D-threonine were more similar to sampled field communities than those cultured with glucose or [C2mim]Cl. Although observed relative richness in operational taxonomic units (OTUs) was lower for laboratory cultures than for field communities, both flask and reactor systems supported phylogenetically diverse communities. These results importantly provide a foundation for laboratory models of industrial bioreactor failure scenarios. © 2014 Lee et al. |
Databáze: | OpenAIRE |
Externí odkaz: |