q -Riordan array for q -Pascal matrix and its inverse matrix

Autor: Fatma Yesil, Dziemianczuk Maciej, Tuğlu Naim, E. Gokcen Kocer
Přispěvatelé: Amasya Üniversitesi, Tuglu, Naim -- 0000-0002-7277-0034, Dziemianczuk, Maciej -- 0000-0002-0553-7750, [Tuglu, Naim] Gazi Univ, Fac Sci, Dept Math, Ankara, Turkey -- [Yesil, Fatma] Amasya Univ, Fac Art & Sci, Dept Math, Amasya, Turkey -- [Dziemianczuk, Maciej] Univ Gdansk, Inst Informat, Gdansk, Poland -- [Kocer, E. Gokcen] Konya Necmettin Erbakan Univ, Fac Educ Meram, Konya, Turkey, Naim Tuğlu: 0000-0002-7277-0034, Maciej Dziemianczuk: 0000-0002-0553-7750, Necmettin Erbakan Üniversitesi Fen Fakültesi, Matematik ve Bilgisayar Bilimleri Bölümü Cebir ve Sayılar Teorisi Anabilim Dalı
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Volume: 40, Issue: 5 1038-1048
Turkish Journal of Mathematics
ISSN: 1300-0098
1303-6149
Popis: In this paper, we prove the q -analogue of the fundamental theorem of Riordan arrays. In particular, by defining two new binary operations ∗q and ∗1/q , we obtain a q -analogue of the Riordan representation of the q -Pascal matrix. In addition, by aid of the q -Lagrange expansion formula we get q -Riordan representation for its inverse matrix. In this paper, we prove the q -analogue of the fundamental theorem of Riordan arrays. In particular, by defining two new binary operations ∗q and ∗1/q , we obtain a q -analogue of the Riordan representation of the q -Pascal matrix. In addition, by aid of the q -Lagrange expansion formula we get q -Riordan representation for its inverse matrix.
Databáze: OpenAIRE