Popis: |
The aim to decarbonize the energy supply represents a major technical and social challenge. The design of approaches for future energy network operation faces the technical challenge of needing to coordinate a vast number of new network participants spatially and temporally, in order to balance energy supply and demand, while achieving secure network operation. At the same time these approaches should ideally provide economic optimal solutions. In order to meet this challenge, the research field of transactive control emerged, which is based on an appropriate interaction of market and control mechanisms. These approaches have been extensively studied for electric power networks. In order to account for the strong differences between the operation of electric power networks and other energy networks, new approaches need to be developed. Therefore, within this work a new transactive control approach for Coupled Electric Power and District Heating Networks (CEPDHNs) is presented. As this is built upon a model-based control approach, a suitable model is designed first, which enables to operate coupled electric power and district heating networks as efficient as possible. Also, for the transactive control approach a new fitted procedure is developed to determine market clearing prices in the multi-energy system. Further, a distributed form of district heating network operation is designed in this context. The effectiveness of the presented approach is analyzed in multiple simulations, based on real world networks. |