Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads

Autor: Jason Dang, Timothy D. Arthur, Zhenjiang Zech Xu, Rodolfo A. Salido, Cameron Martino, Rob Knight, James Gaffney, Jon G. Sanders, Mahdieh Khosroheidari, Greg Humphrey, Jeremiah J. Minich, Brigid S. Boland, Kristen Jepsen, Qiyun Zhu, John T. Chang, Marlon Liyanage, Pieter C. Dorrestein, Robert A. Quinn, Douglas Conrad, Karenina Sanders, Caitriona Brennan, Feng Chen, William J. Sandborn, Marcus W. Fedarko, Cliff Green, Larry Smarr, Pavel A. Pevzner, Anton Bankevich, Tariq M. Rana, Sergey Nurk, Vanessa V. Phelan
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Genome Biology, Vol 20, Iss 1, Pp 1-14 (2019)
Genome biology, vol 20, iss 1
Genome Biology
DOI: 10.1186/s13059-019-1834-9
Popis: As metagenomic studies move to increasing numbers of samples, communities like the human gut may benefit more from the assembly of abundant microbes in many samples, rather than the exhaustive assembly of fewer samples. We term this approach leaderboard metagenome sequencing. To explore protocol optimization for leaderboard metagenomics in real samples, we introduce a benchmark of library prep and sequencing using internal references generated by synthetic long-read technology, allowing us to evaluate high-throughput library preparation methods against gold-standard reference genomes derived from the samples themselves. We introduce a low-cost protocol for high-throughput library preparation and sequencing.
Databáze: OpenAIRE