Automation of Processing Multichannel Remote Sensing Images Based on Performance Prediction

Autor: Vladimir V. Lukin, Oleksii Rubel, Nataliia Kussul, Karen Egiazarian, Benoit Vozel, Mikhail L. Uss, Sergey K. Abramov
Přispěvatelé: National Aerospace University, Space Research Institute of the NASU and NSAU, National Academy of Sciences of Ukraine (NASU)-National Space Agency of Ukraine (NSAU), Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Tampere University of Technology [Tampere] (TUT), Nantes Université (NU)-Université de Rennes 1 (UR1), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Zdroj: 2020 IEEE Ukrainian Microwave Week, UkrMW 2020
2020 IEEE Ukrainian Microwave Week, UkrMW 2020, Sep 2020, Kharkiv, Ukraine. pp.139-144, ⟨10.1109/UkrMW49653.2020.9252654⟩
DOI: 10.1109/ukrmw49653.2020.9252654
Popis: International audience; This paper deals with processing of multichannel remote sensing images for which it is difficult and often impossible to carry out any stage of data processing in an interactive manner and, thus, full or, at least, partial automation is needed. Despite of existence of many methods, it is difficult to choose the best or an appropriate one and/or to set its parameters. One reason is that quantitative criteria characterizing efficiency of applicable methods are often unknown, especially for remote sensing data at hand. Thus, it is desirable to have some preliminary prediction of errors or accuracy for data processing methods and to choose a good method and its parameters properly. Here we consider few approaches and describe the results already obtained in recent years. © 2020 IEEE.
Databáze: OpenAIRE