Babai's conjecture for high-rank classical groups with random generators

Autor: Sean Eberhard, Urban Jezernik
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Popis: Let $G = \mathrm{SCl}_n(q)$ be a quasisimple classical group with $n$ large, and let $x_1, \dots, x_k \in G$ random, where $k \geq q^C$. We show that the diameter of the resulting Cayley graph is bounded by $q^2 n^{O(1)}$ with probability $1 - o(1)$. In the particular case $G = \mathrm{SL}_n(p)$ with $p$ a prime of bounded size, we show that the same holds for $k = 3$.
44 pages. Several typos corrected. Referee comments incorporated
Databáze: OpenAIRE