Liquid crystalline lipid nanoparticles for combined delivery of curcumin, fish oil and BDNF: In vitro neuroprotective potential in a cellular model of tunicamycin-induced endoplasmic reticulum stress

Autor: Miora Rakotoarisoa, Borislav Angelov, Markus Drechsler, Valérie Nicolas, Thomas Bizien, Yulia E. Gorshkova, Yuru Deng, Angelina Angelova
Přispěvatelé: Institut Galien Paris-Saclay (IGPS), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institute of Physics [Prague], Czech Academy of Sciences [Prague] (CAS), Universität Bayreuth, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique (IPSIT), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Frank Laboratory of Neutron Physics [Dubna] (FLNP), Joint Institute for Nuclear Research (JINR), University of Chinese Academy of Sciences [Beijing] (UCAS), Angelova, Angelina
Rok vydání: 2022
Předmět:
Zdroj: Smart Materials in Medicine
Smart Materials in Medicine, 2022, 3, pp.274-288. ⟨10.1016/j.smaim.2022.03.001⟩
ISSN: 2590-1834
DOI: 10.1016/j.smaim.2022.03.001
Popis: International audience; We develop multidrug-loaded cubosome and spongosome lipid nanoparticles for targeting of endoplasmic reticulum stress as a potential emerging therapeutic strategy against neuronal degeneration. The multicompartment organization of the liquid crystalline nanoparticles (LCNPs), fabricated by self-assembly, was characterized by cryogenic transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). Monooleinbased cubosome and spongosome LCNPs co-encapsulated the natural plant-derived antioxidant curcumin, fish oil rich in ω-3 polyunsaturated fatty acids (PUFA), and the neurotrophin brain-derived neurotrophic factor (BDNF), which is of vital need for neurogenesis. The neuroprotective properties of the nanoparticles were in vitro investigated in a cellular model of tunicamycin-induced endoplasmic reticulum (ER) stress using differentiated human neuroblastoma SH-SY5Y cells deprieved from serum. The intracellular accumulation of aggregates of misfolded proteins, typical for the ER stress process, was analyzed by fluorescence microscopy co-localization imaging and ER staining. The performed cellular bioassays established that the BDNF-loaded LCNPs enhanced the neuronal cell survival. The diminution of the tunicamycin-induced ER stress upon internalization of neuroprotective nanoparticles was quantified via the changes in the Thioflavin T fluorescence, which is a sensitive marker of protein aggregation. LCNPs with multi-drug loading appear to be promising candidates to face the challenges in neuroprotective nanomedicine development by exploiting ER-stress targeting mechanisms.
Databáze: OpenAIRE