Probing the interstellar dust in galaxies over >10 Gyr of cosmic history
Autor: | Varsha P. Kulkarni, Donald G. York, Debopam Som, Giovanni Vladilo, Daniel E. Welty, Monique C. Aller |
---|---|
Rok vydání: | 2016 |
Předmět: |
Luminous infrared galaxy
Physics 010504 meteorology & atmospheric sciences Interstellar cloud Extinction (astronomy) Astronomy Astronomy and Astrophysics Astrophysics::Cosmology and Extragalactic Astrophysics Astrophysics Intergalactic dust Astrophysics - Astrophysics of Galaxies 01 natural sciences Dust lane Peculiar galaxy Space and Planetary Science 0103 physical sciences Elliptical galaxy Astrophysics::Solar and Stellar Astrophysics Astrophysics::Earth and Planetary Astrophysics 010303 astronomy & astrophysics Astrophysics::Galaxy Astrophysics 0105 earth and related environmental sciences Cosmic dust |
Zdroj: | Planetary and Space Science. 133:7-13 |
ISSN: | 0032-0633 |
Popis: | This article is based on an invited talk given by V. P. Kulkarni at the 8th Cosmic Dust meeting. Dust has a profound effect on the physics and chemistry of the interstellar gas in galaxies and on the appearance of galaxies. Understanding the cosmic evolution of dust with time is therefore crucial for understanding the evolution of galaxies. Despite the importance of interstellar dust, very little is known about its nature and composition in distant galaxies. We summarize the results of our ongoing programs using observations of distant quasars to obtain better constraints on dust grains in foreground galaxies that happen to lie along the quasar sightlines. These observations consist of a combination of mid-infrared data obtained with the Spitzer Space Telescope and optical/UV data obtained with ground-based telescopes and/or the Hubble Space Telescope. The mid-IR data target the 10 $\mu$m and 18 $\mu$m silicate absorption features, while the optical/UV data allow determinations of element depletions, extinction curves, 2175 {\AA} bumps, etc. Measurements of such properties in absorption-selected galaxies with redshifts ranging from $z\sim0$ to $z>2$ provide constraints on the evolution of interstellar dust over the past $> 10$ Gyr. The optical depth of the 10 $\mu$m silicate absorption feature ($\tau_{10}$) in these galaxies is correlated with the amount of reddening along the sightline. But there are indications [e.g., based on the $\tau_{10}$ /$E(B-V)$ ratio and possible grain crystallinity] that the dust in these distant galaxies differs in structure and composition from the dust in the Milky Way and the Magellanic Clouds. We briefly discuss the implications of these results for the evolution of galaxies and their star formation history. Comment: 27 pages, including 5 figures. Accepted for publication in Planetary and Space Science |
Databáze: | OpenAIRE |
Externí odkaz: |