Co-divergence and tree topology
Autor: | Angelo Monti, Tiziana Calamoneri, Blerina Sinaimeri |
---|---|
Přispěvatelé: | Department of Informatics and System Sciences (Sapienza University of Rome), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Equipe de recherche européenne en algorithmique et biologie formelle et expérimentale (ERABLE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Baobab, Département PEGASE [LBBE] (PEGASE), Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] |
Rok vydání: | 2018 |
Předmět: |
[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]
Network topology 01 natural sciences 010305 fluids & plasmas Combinatorics Evolution Molecular 03 medical and health sciences 0103 physical sciences Subsequence Quantitative Biology::Populations and Evolution Animals Humans Equivalence (formal languages) reconciliations Time complexity Phylogeny 030304 developmental biology Mathematics 0303 health sciences Phylogenetic tree Models Genetic Applied Mathematics Approximation algorithm Computational Biology caterpillars Agricultural and Biological Sciences (miscellaneous) Tree structure Modeling and Simulation co-phylogeny [INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] Heuristics Algorithms |
Zdroj: | Journal of Mathematical Biology Journal of Mathematical Biology, 2019, 79 (3), pp.1149-1167. ⟨10.1007/s00285-019-01385-w⟩ Journal of Mathematical Biology, Springer Verlag (Germany), 2019, 79 (3), pp.1149-1167. ⟨10.1007/s00285-019-01385-w⟩ |
ISSN: | 1432-1416 0303-6812 |
DOI: | 10.1007/s00285-019-01385-w⟩ |
Popis: | In reconstructing the common evolutionary history of hosts and parasites, the current method of choice is the phylogenetic tree reconciliation. In this model, we are given a host tree H, a parasite tree P, and a function [Formula: see text] mapping the leaves of P to the leaves of H and the goal is to find, under some biologically motivated constraints, a reconciliation, that is a function from the vertices of P to the vertices of H that respects [Formula: see text] and allows the identification of biological events such as co-speciation, duplication and host switch. The maximum co-divergence problem consists in finding the maximum number of co-speciations in a reconciliation. This problem is NP-hard for arbitrary phylogenetic trees and no approximation algorithm is known. In this paper we consider the influence of tree topology on the maximum co-divergence problem. In particular we focus on a particular tree structure, namely caterpillar, and show that-in this case-the heuristics that are mostly used in the literature provide solutions that can be arbitrarily far from the optimal value. Then, we prove that finding the max co-divergence is equivalent to compute the maximum length of a subsequence with certain properties of a given permutation. This equivalence leads to two consequences: (1) it shows that we can compute efficiently in polynomial time the optimal time-feasible reconciliation and (2) it can be used to understand how much the tree topology influences the value of the maximum number of co-speciations. |
Databáze: | OpenAIRE |
Externí odkaz: |