Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo
Autor: | Peter T. C. So, Vilena I. Maklakova, Jagath C. Rajapakse, Tetsuya Matsuguchi, Jennifer E. Kay, Bevin P. Engelward, Michelle R. Sukup-Jackson, Li Na, Dushan N. Wadduwage, Lara S. Collier, Takafumi Kimoto, Vijay Raj Singh, Vidya S. Jonnalagadda, Elizabeth A. Rowland, Orsolya Kiraly, Kelly E. Winther, Danielle N. Chow |
---|---|
Přispěvatelé: | Massachusetts Institute of Technology. Department of Biological Engineering, Massachusetts Institute of Technology. Department of Mechanical Engineering, Sukup-Jackson, Michelle R., Kiraly, Orsolya, Kay, Jennifer Elizabeth, Rowland, Elizabeth A., Winther, Kelly E., Chow, Danielle N., Kimoto, Takafumi, Matsuguchi, Tetsuya, Jonnalagadda, Vidya S., So, Peter T. C., Engelward, Bevin P. |
Rok vydání: | 2013 |
Předmět: |
Genome instability
Cancer Research Aging RNA Untranslated DNA Repair Liver cytology Cancer Treatment medicine.disease_cause Biochemistry Green fluorescent protein Mice Nucleic Acids Molecular Cell Biology Medicine and Health Sciences DNA Breaks Double-Stranded Homologous Recombination Genetics (clinical) Age Factors Brain 3. Good health Liver Oncology Research Article lcsh:QH426-470 DNA repair DNA damage Colon DNA recombination Transgene Green Fluorescent Proteins Mice Transgenic Biology Genomic Instability Bacterial Proteins medicine Genetics Animals Molecular Biology Pancreas Ecology Evolution Behavior and Systematics Biology and life sciences Cell Biology DNA Molecular biology Mice Inbred C57BL lcsh:Genetics Luminescent Proteins Mutagenesis Mutational Hypotheses Mutation Homologous recombination Carcinogenesis |
Zdroj: | PLoS Genetics Public Library of Science PLoS Genetics, Vol 10, Iss 6, p e1004299 (2014) |
ISSN: | 1553-7404 |
Popis: | Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals. National Institutes of Health (U.S.) (Program Project Grant P01-CA026731) National Institutes of Health (U.S.) (R33-CA112151) National Institute of Environmental Health Sciences (P30-ES002109) Singapore-MIT Alliance for Research and Technology Center National Institutes of Health (U.S.) (P41-EB015871) National Cancer Institute (U.S.) (P30-CA014051) |
Databáze: | OpenAIRE |
Externí odkaz: |