Model predictive control for continuous lactide ring‐opening polymerization processes

Autor: Liborio Ivano Costa, Sami Othman, Nida Sheibat-Othman, Toufik Bakir, Anis Sakly, Nawel Afsi
Přispěvatelé: Université de Monastir - University of Monastir (UM), Laboratoire d'automatique, de génie des procédés et de génie pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Asian Journal of Control
Asian Journal of Control, Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) 2020, ⟨10.1002/asjc.2453⟩
ISSN: 1561-8625
1934-6093
DOI: 10.1002/asjc.2453⟩
Popis: International audience; Polylactic acid (PLA) is an attractive environment-friendly thermoplastic that is bio-sourced and biodegradable. PLA is industrially produced by the ring-opening polymerization of Lactide. This reaction is sensitive to drifts in the operating conditions and impurities in the raw materials that may affect the reaction rate as well as the polymer properties, which can be very costly in continuous processes. It is therefore crucial to employ a control strategy that allows recovering the nominal conditions and maintaining the desired properties and conversion level in case of drift. Three control strategies are discussed in this paper: Proportional-Integral controller (PI), dynamic optimization and Model Predictive Control (MPC). The proposed approaches are validated by simulation of a continuous PLA process constituted of three cascade reactors including one loop reactor in the middle. Besides the coupling of inputs and outputs, the process model is highly nonlinear and the control is done only on the boundaries. The results show that the open-loop optimization strategy provides better performance compared to the PI controller if the disturbance is assumed to be measured. The MPC also shows superior performances provided that the disturbance is first estimated. A polynomial model is developed to predict the non-measured disturbance based on the measured outputs.
Databáze: OpenAIRE