Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations

Autor: Abramovich, D., Marcus, S., JONATHAN WISE
Rok vydání: 2012
Předmět:
Zdroj: Scopus-Elsevier
DOI: 10.48550/arxiv.1207.2085
Popis: We consider four approaches to relative Gromov-Witten theory and Gromov-Witten theory of degenerations: Jun Li's original approach, Bumsig Kim's logarithmic expansions, Abramovich-Fantechi's orbifold expansions, and a logarithmic theory without expansions due to Gross-Siebert and Abramovich-Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov-Witten invariants associated to all four of these theories are identical.
Comment: 42 pages. Some minor changes. To appear in Annales de l'Institut Fourier
Databáze: OpenAIRE