High-performance flexible transparent micro-supercapacitors from nanocomposite electrodes encapsulated with solution processed MoS2 nanosheets

Autor: Han-Ki Kim, Kandasamy Prabakar, Jihyun Kim, Vivekanandan Raman, Joohoon Kang, Aravindha Raja Selvaraj, Dongjoon Rhee
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Science and Technology of Advanced Materials
article-version (VoR) Version of Record
Science and Technology of Advanced Materials, Vol 22, Iss 1, Pp 875-884 (2021)
ISSN: 1878-5514
1468-6996
Popis: Two-dimensional molybdenum disulfide (MoS2) nanosheets have emerged as a promising material for transparent, flexible micro-supercapacitors, but their use in electrodes is hindered by their poor electrical conductivity and cycling stability because of restacking. In this paper, we report a novel electrode architecture to exploit electrochemical activity of MoS2 nanosheets. Electrochemically exfoliated MoS2 dispersion was spin coated on mesh-like silver networks encapsulated with a flexible conducting film exhibiting a pseudocapacitive behavior. MoS2 nanosheets were electrochemically active over the whole electrode surface and the conductive layer provided a pathway to transport electrons between the MoS2 and the electrolyte. As the result, the composite electrode achieved a large areal capacitance (89.44 mF cm−2 at 6 mA cm−2) and high energy and power densities (12.42 µWh cm−2 and P = 6043 µW cm−2 at 6 mA cm−2) in a symmetric cell configuration with 3 M KOH solution while exhibiting a high optical transmittance of ~80%. Because the system was stable against mechanical bending and charge/discharge cycles, a flexible micro-supercapacitor that can power electronics at different bending states was realized.
Graphical abstract
Databáze: OpenAIRE