Bayesian Analysis and Prediction of Patients’ Demands for Visits in Home Care

Autor: Raffaele Argiento, Alessandra Guglielmi, Inad Nawajah, Ettore Lanzarone
Rok vydání: 2013
Předmět:
Zdroj: Springer Proceedings in Mathematics & Statistics ISBN: 9783319020839
The first Bayesian Young Statisticians Meeting, BAYSM 2013, pp. 129–133, Milano, 5/6 giugno 2013
info:cnr-pdr/source/autori:R. Argiento, A. Guglielmi, E. Lanzarone, and I. Nawajah/congresso_nome:The first Bayesian Young Statisticians Meeting, BAYSM 2013/congresso_luogo:Milano/congresso_data:5%2F6 giugno 2013/anno:2014/pagina_da:129/pagina_a:133/intervallo_pagine:129–133
DOI: 10.1007/978-3-319-02084-6_25
Popis: Home care (HC) providers are complex structures which include medical, paramedical, and social services delivered to patients at their domicile. High randomness affects the service delivery, mainly in terms of unplanned changes in patients' conditions, which make the amount of required visits highly uncertain. In this paper, we propose a Bayesian model to represent the HC patient's demand evolution over time and to predict the demand in future periods. Results from the application to a relevant real case validate the approach, since low prediction errors are found.
Databáze: OpenAIRE