Construction of topological quantum codes on bidimensional manifolds
Autor: | Clarice Dias de Albuquerque |
---|---|
Přispěvatelé: | Palazzo Júnior, Reginaldo, 1951, Silva, Eduardo Brandani da, Juriaans, Orlando Stanley, Alves, Marcelo Muniz Silva, Caldeira, Amir Ordacgi, Costa, Max Henrique Machado, Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica, UNIVERSIDADE ESTADUAL DE CAMPINAS |
Jazyk: | portugalština |
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP |
Popis: | Orientadores: Reginaldo Palazzo Junior, Eduardo Brandani da Silva Tese (doutorado) - Universidade Estadula de Campinas, Faculdade de Engenharia Eletrica e de Computação Resumo: Neste trabalho apresentamos um amplo estudo de códigos quânticos topológicos, trazendo inovação para esta área. Inicialmente geramos novos códigos quânticos teóricos, dentre os quais se destaca a classe [[d2,2,d]] cujos parâmetros são os melhores ate então apresentados para este tipo de código. Nesta proposta sistematizamos a construção de códigos teóricos baseados em teoria de grupos e também em analise combinatória. Com respeito aos códigos quânticos topológicos em superfícies com gênero g = 2, apresentamos uma construção baseada em geometria hiperbólica, generalizando a construção de Kitaev. Reproduzimos e ampliamos a classe de códigos quânticos com distancia 3 decorrentes de mergulhos de grafos completos em superfícies com gêneros específicos obtidos primeiramente por Bombin e Martin-Delgado, com o diferencial de descreve-los geometricamente e exibir claramente seus parâmetros. Obtemos uma classe de códigos MDS Maximum Distance Separable). Explicitamos em tabelas os melhores códigos para superfícies com gênero g = 2,3,4 e 5 obtidos a partir dessa construção, e analisamos esses resultados Abstract: In this work we present an extensive study of topological quantum codes. As a consequence, new promising ideas, concepts and results are also presented. First of all, new toric quantum codes are constructed among which the [[d2,2,d]] class stands out as the best known so far. This proposed construction of toric codes is realized based upon group theory and combinatorial analysis. Regarding the topological quantum codes in surfaces with genus g = 2, we consider a construction method based on hyperbolic geometry and so generalizing Kitaev's construction. We reproduce and enlarge the class of quantum codes with distance 3 as a consequence of the embedding of complete graphs in surface with specific genus. This class was first proposed by Bombin andMartin-Delgado. The latter class is geometrically described and its parameters are explicitly exhibited. We also obtain a class of MDS (Maximum Distance Separable) codes in surfaces with genus g = 2,3,4 and 5, obtained by the proposed construction are tabulated and analyzed Doutorado Telecomunicações e Telemática Doutor em Engenharia Elétrica |
Databáze: | OpenAIRE |
Externí odkaz: |