Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel

Autor: Akriti Sharma, Rama Shanker Verma, J. Vasantha Kumar, Santosh Gupta, Piyush Kumar Gupta, Vineeta Sharma
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Biological Macromolecules. 162:1358-1371
ISSN: 0141-8130
DOI: 10.1016/j.ijbiomac.2020.07.238
Popis: Failure of bioengineered meniscus implant after transplantation is a major concern owing to mechanical failure, lack of chondrogenic capability and patient specific design. In this article, we have, for the first time, fabricated a 3D printed scaffold with carbohydrate based self-healing interpenetrating network (IPN) hydrogels-based monolith construct for load bearing meniscus tissue. 3D printed PLA scaffold was surface functionalized and embedded with self-healing IPN hydrogel for interfacial bonding further characterized by micro CT. Using collagen (C), alginate (A) and oxidized alginate (ADA), we developed self-healing IPN hydrogels with dual crosslinking (Ca2+ based ionic crosslinking and Schiff base (A-A, A-ADA)) capability and studied their physicochemical properties. Further, we studied human stem cells behaviour and chondrogenic differentiation potential within these IPN hydrogels. In-vivo heterotopic implantation confirmed biocompatibility of the monolith showing the feasibility of using carbohydrate based IPN hydrogel embedded in 3D printed scaffold for meniscal tissue development.
Databáze: OpenAIRE