Comparing image quality in phase contrast sub$\mu$ X-ray tomography—A round-robin study
Autor: | P. Lhuissier, Richard Schielein, Simon Zabler, Randolf Hanke, Maximilian Ullherr, Berit Zeller-Plumhoff, Christian Fella, O. Focke, W. DeBoever |
---|---|
Přispěvatelé: | Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Nuclear and High Energy Physics
Noise power Physics - Instrumentation and Detectors Image quality Physics::Medical Physics 02 engineering and technology 01 natural sciences Imaging phantom 010309 optics Optics Quality (physics) 0103 physical sciences [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] Projection (set theory) Modulation transfer Instrumentation Physics Phase-contrast [PHYS]Physics [physics] business.industry X-ray imaging Spectral density Physics - Applied Physics 021001 nanoscience & nanotechnology Signal-to-noise ratio (imaging) Signal-to-noise ratio Tomography 0210 nano-technology business |
Zdroj: | Nucl.Instrum.Meth.A Nucl.Instrum.Meth.A, 2020, 951, pp.162992. ⟨10.1016/j.nima.2019.162992⟩ Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Elsevier, 2020, 951, pp.162992. ⟨10.1016/j.nima.2019.162992⟩ |
ISSN: | 0168-9002 |
DOI: | 10.1016/j.nima.2019.162992⟩ |
Popis: | International audience; How to evaluate and compare image quality from different sub-micrometer (sub μ ) CT scans? A simple test phantom made of polymer microbeads is used for recording projection images as well as 13 CT scans in a number of commercial and non-commercial scanners. From the resulting CT images, signal and noise power spectra are modelled for estimating volume signal-to-noise ratios (3D SNR spectra). Using the same CT images, a time- and shape-independent transfer function (MTF) is computed for each scan, including phase contrast effects and image blur (MTF blur ). The SNR spectra and MTF of the CT scans are compared to 2D SNR spectra of the projection images. In contrary to 2D SNR, volume SNR can be normalized with respect to the object’s power spectrum, yielding detection effectiveness (DE) a new measure which reveals how technical differences as well as operator-choices strongly influence scan quality for a given measurement time. Using DE, both source-based and detector-based sub μ CT scanners can be studied and their scan quality can be compared. Future application of this work requires a particular scan acquisition scheme which will allow for measuring 3D signal-to-noise ratios, making the model fit for 3D noise power spectra obsolete. |
Databáze: | OpenAIRE |
Externí odkaz: |