Numerical simulations of the flow and aerosol dispersion in a violent expiratory event: Outcomes of the '2022 International Computational Fluid Dynamics Challenge on violent expiratory events'
Autor: | Jordi Pallares, Alexandre Fabregat, Akim Lavrinenko, Hadifathul Akmal bin Norshamsudin, Gabor Janiga, David F. Fletcher, Kiao Inthavong, Marina Zasimova, Vladimir Ris, Nikolay Ivanov, Robert Castilla, Pedro Javier Gamez-Montero, Gustavo Raush, Hadrien Calmet, Daniel Mira, Jana Wedel, Mitja Štrakl, Jure Ravnik, Douglas Fontes, Francisco José de Souza, Cristian Marchioli, Salvatore Cito |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Mecànica de Fluids, Barcelona Supercomputing Center, Universitat Politècnica de Catalunya. CATMech - Centre Avançat de Tecnologies Mecàniques |
Rok vydání: | 2023 |
Předmět: |
Aerosols
Fluid Flow and Transfer Processes Violent expiratory event Mechanics of Materials Mechanical Engineering Computational Mechanics Dinàmica de fluids computacional Computational fluid dynamics Condensed Matter Physics Aerosol dispersion International challenge Enginyeria mecànica::Mecànica de fluids [Àrees temàtiques de la UPC] |
Zdroj: | Physics of Fluids. 35 |
ISSN: | 1089-7666 1070-6631 2020-1133 |
Popis: | This paper presents and discusses the results of the "2022 International Computational Fluid Dynamics Challenge on violent expiratory events" aimed at assessing the ability of different computational codes and turbulence models to reproduce the flow generated by a rapid prototypical exhalation and the dispersion of the aerosol cloud it produces. Given a common flow configuration, a total of seven research teams from different countries have performed a total of eleven numerical simulations of the flow dispersion by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) or using the Large-Eddy Simulations (LES) or hybrid (URANS-LES) techniques. The results of each team have been compared with each other and assessed against a Direct Numerical Simulation (DNS) of the exact same flow. The DNS results are used as reference solution to determine the deviation of each modeling approach. The dispersion of both evaporative and non-evaporative particle clouds has been considered in twelve simulations using URANS and LES. Most of the models predict reasonably well the shape and the horizontal and vertical ranges of the buoyant thermal cloud generated by the warm exhalation into an initially quiescent colder ambient. However, the vertical turbulent mixing is generally underpredicted, especially by the URANS-based simulations, independently of the specific turbulence model used (and only to a lesser extent by LES). In comparison to DNS, both approaches are found to overpredict the horizontal range covered by the small particle cloud that tends to remain afloat within the thermal cloud well after the flow injection has ceased This study was funded by the Spanish Ministerio de Ciencia, Innovación y Universidades through the grants PID2020-113303GB-C21 and RTI2018-100907-A-I00 (MCIU/AEI/FEDER) and by the Generalitat de Catalunya through the grant 2017-SGR-1234. M. Z, V. R. and N. I. acknowledge the Super Computer Center (SCC) «Polytechnic» for providing computational resources. J.W., M.Š. and J.R. would like to thank the valuable insights given by professors Paul Steinmann and Matjaž Hriberšek and the financial support of the Deutsche Forschungsgemeinschaft, Germany under project STE 544/58-2 and the Slovenian Research Agency under project No. P2-0196 |
Databáze: | OpenAIRE |
Externí odkaz: |