Revealing and Resolving the Restrained Enzymatic Cleavage of DNA Self-Assembled Monolayers on Gold: Electrochemical Quantitation and ESI-MS Confirmation
Autor: | Yunchao Li, Xinglin Wang, Hua-Zhong Yu, Xiaoyi Gao, Mingxi Geng |
---|---|
Rok vydání: | 2017 |
Předmět: |
Spectrometry
Mass Electrospray Ionization Stereochemistry DNA Single-Stranded 02 engineering and technology Cleavage (embryo) 01 natural sciences Ruthenium Analytical Chemistry chemistry.chemical_compound Hydrolysis Coordination Complexes Enzymatic hydrolysis Nucleotide Electrodes chemistry.chemical_classification Chemistry 010401 analytical chemistry Self-assembled monolayer Electrochemical Techniques 021001 nanoscience & nanotechnology Combinatorial chemistry 0104 chemical sciences Exodeoxyribonucleases Nucleic acid Gold 0210 nano-technology Biosensor Oxidation-Reduction DNA |
Zdroj: | Analytical chemistry. 89(4) |
ISSN: | 1520-6882 |
Popis: | Herein we report a combined electrochemical and ESI-MS study of the enzymatic hydrolysis efficiency of DNA self-assembled monolayers (SAMs) on gold, platform systems for understanding nucleic acid surface chemistry and for constructing DNA-based biosensors. Our electrochemical approach is based on the comparison of the amounts of surface-tethered DNA nucleotides before and after Exonuclease I (Exo I) incubation using electrostatically bound [Ru(NH3)6]3+ as redox indicators. It is surprising to reveal that the hydrolysis efficiency of ssDNA SAMs does not depend on the packing density and base sequence, and that the cleavage ends with surface-bound shorter strands (9-13 mers). The ex-situ ESI-MS observations confirmed that the hydrolysis products for ssDNA SAMs (from 24 to 56 mers) are dominated with 10-15 mer fragments, in contrast to the complete digestion in solution. Such surface-restrained hydrolysis behavior is due to the steric hindrance of the underneath electrode to the Exo I/DNA binding, which is essential for the occurrence of Exo I-catalyzed processive cleavage. More importantly, we have shown that the hydrolysis efficiency of ssDNA SAMs can be remarkably improved by adopting long alkyl linkers (locating DNA strands further away from the substrates). |
Databáze: | OpenAIRE |
Externí odkaz: |