Information Theory in Computational Biology: Where We Stand Today

Autor: Eduardo Costa, Rasna Walia, John Van Van Hemert, Shravan Sukumar, Jie Hu, Pritam Chanda
Rok vydání: 2020
Předmět:
Zdroj: Entropy
Volume 22
Issue 6
Entropy, Vol 22, Iss 627, p 627 (2020)
ISSN: 1099-4300
Popis: &ldquo
A Mathematical Theory of Communication&rdquo
was published in 1948 by Claude Shannon to address the problems in the field of data compression and communication over (noisy) communication channels. Since then, the concepts and ideas developed in Shannon&rsquo
s work have formed the basis of information theory, a cornerstone of statistical learning and inference, and has been playing a key role in disciplines such as physics and thermodynamics, probability and statistics, computational sciences and biological sciences. In this article we review the basic information theory based concepts and describe their key applications in multiple major areas of research in computational biology&mdash
gene expression and transcriptomics, alignment-free sequence comparison, sequencing and error correction, genome-wide disease-gene association mapping, metabolic networks and metabolomics, and protein sequence, structure and interaction analysis.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje