Une approche structurelle pour la ré-identification de personnes

Autor: Luc Brun, Donatelo Conte, Amal Mahboubi
Přispěvatelé: Mahboubi, Amal, Equipe Image - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU), Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT), Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
Rok vydání: 2018
Předmět:
business.industry
Computer science
Scale (chemistry)
Feature extraction
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
020207 software engineering
02 engineering and technology
Tracking (particle physics)
Machine learning
computer.software_genre
Object (philosophy)
ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.10: Vision and Scene Understanding
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]
Kernel (image processing)
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
Video tracking
0202 electrical engineering
electronic engineering
information engineering

Task analysis
020201 artificial intelligence & image processing
Artificial intelligence
business
computer
ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.6: Learning
Zdroj: ICPR
24th International Conference on Pattern Recognition (ICPR)
24th International Conference on Pattern Recognition (ICPR), Aug 2018, Pékin, China. pp.1616-1621
ICPR 2018 International Conference on Pattern Recognition
ICPR 2018 International Conference on Pattern Recognition, Aug 2018, Beijing, China
DOI: 10.1109/icpr.2018.8545640
Popis: International audience; Although it has been studied extensively during past decades, object tracking is still a difficult problem due to many challenges. Several improvements have been done, but more and more complex scenes (dense crowd, complex interactions) need more sophisticated approaches. Particularly long-term tracking is an interesting problem that allow to track objects even after it may become longtime occluded or it leave/re-enter the field-of-view. In this case the major challenges are significantly changes in appearance, scale and so on. At the heart of the solution of long-term tracking is the re-identification technique, that allows to identify an object coming back visible after an occlusion or re-entering on the scene. This paper proposes an approach for pedestrian re-identification based on structural representation of people. The experimental evaluation is carried out on two public data sets (ETHZ and CAVIAR4REID datasets) and they show promising results compared to others state-of-the-art approaches.
Databáze: OpenAIRE