A criterion for uniform finiteness in the imaginary sorts
Autor: | Will Johnson |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Archive for Mathematical Logic. 61:583-589 |
ISSN: | 1432-0665 0933-5846 |
DOI: | 10.1007/s00153-021-00803-5 |
Popis: | Let $T$ be a theory. If $T$ eliminates $\exists^\infty$, it need not follow that $T^{eq}$ eliminates $\exists^\infty$, as shown by the example of the $p$-adics. We give a criterion to determine whether $T^{eq}$ eliminates $\exists^\infty$. Specifically, we show that $T^{eq}$ eliminates $\exists^\infty$ if and only if $\exists^\infty$ is eliminated on all interpretable sets of "unary imaginaries." This criterion can be applied in cases where a full description of $T^{eq}$ is unknown. As an application, we show that $T^{eq}$ eliminates $\exists^\infty$ when $T$ is a C-minimal expansion of ACVF. Comment: 6 pages |
Databáze: | OpenAIRE |
Externí odkaz: |