Multi-domain spectral approach for the Hilbert transform on the real line
Autor: | Julien Riton, Christian Klein, Nikola Stoilov |
---|---|
Rok vydání: | 2021 |
Předmět: |
Partial differential equation
media_common.quotation_subject Numerical analysis Mathematical analysis FOS: Physical sciences Numerical Analysis (math.NA) Pattern Formation and Solitons (nlin.PS) 010103 numerical & computational mathematics Infinity Nonlinear Sciences - Pattern Formation and Solitons 01 natural sciences 010101 applied mathematics symbols.namesake FOS: Mathematics symbols Mathematics - Numerical Analysis Hilbert transform 0101 mathematics Algebraic number Spectral method Real line media_common Analytic function Mathematics |
Zdroj: | Partial Differential Equations and Applications. 2 |
ISSN: | 2662-2971 2662-2963 |
DOI: | 10.1007/s42985-021-00094-8 |
Popis: | A multi-domain spectral method is presented to compute the Hilbert transform on the whole compactified real line, with a special focus on piece-wise analytic functions and functions with algebraic decay towards infinity. Several examples of these and other types of functions are discussed. As an application solitons to generalized Benjamin–Ono equations are constructed. |
Databáze: | OpenAIRE |
Externí odkaz: |