Confined buckling of inextensible rods by convex difference algorithms

Autor: Stéphane Pagano, Pierre Alart
Přispěvatelé: Laboratoire de Mécanique et Génie Civil ( LMGC ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2002
Předmět:
computational solid mechanics
confined buckling
Strategy and Management
augmented Lagrangian
02 engineering and technology
[SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph]
local minimization
01 natural sciences
Rod
[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]
symbols.namesake
[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]
0203 mechanical engineering
[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]
[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]
[ SPI.MECA.SOLID ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the solides [physics.class-ph]
Media Technology
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
convex difference
General Materials Science
0101 mathematics
[ PHYS.MECA.SOLID ] Physics [physics]/Mechanics [physics]/Mechanics of the solides [physics.class-ph]
Mathematics
Marketing
Augmented Lagrangian method
Regular polygon
NONCONVEX
nonlinear mechanics
010101 applied mathematics
Maxima and minima
020303 mechanical engineering & transports
Buckling
[ SPI.MECA.MEMA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]
[ PHYS.MECA.MEMA ] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]
symbols
Minification
Convex function
Algorithm
Lagrangian
Zdroj: Comptes Rendus Mécanique
Comptes Rendus Mécanique, Elsevier Masson, 2002, 330, pp.819-824
Comptes Rendus Mécanique, Elsevier, 2002, 330, pp.819-824. ⟨10.1016/S1631-0721(02)01547-4⟩
ISSN: 1631-0721
DOI: 10.1016/s1631-0721(02)01547-4
Popis: In this Note we present an approach to determine the local minima of a specific class of minimization problems. Attention is focused on the inextensibility condition of flexible rods expressed as a nonconvex constraint. Two algorithms are derived from a special splitting of the Lagrangian into the difference of two convex functions (DC). They are compared to the augmented Lagrangian methods used in this context. These DC formulations are easily extended to contact problems and applied to the determination of confined buckling shapes. To cite this article: P. Alart, S. Pagano, C. R. Mecanique 330 (2002) 819–824.
Databáze: OpenAIRE