Clustered piperidinium-functionalized poly(terphenylene) anion exchange membranes with well-developed conductive nanochannels
Autor: | Wenxue Cheng, Xinxin Miao, Liming Ling, Xingchen Shen, Chenxiao Lin |
---|---|
Rok vydání: | 2022 |
Předmět: |
chemistry.chemical_classification
Materials science Ion exchange Cationic polymerization Ionic bonding Conductivity Surfaces Coatings and Films Electronic Optical and Magnetic Materials Biomaterials Colloid and Surface Chemistry Membrane Chemical engineering chemistry Hofmann elimination Chemical stability Alkyl |
Zdroj: | Journal of Colloid and Interface Science. 608:1247-1256 |
ISSN: | 0021-9797 |
Popis: | Anion exchange membrane fuel cells (AEMFCs) attract considerable attention owing to their high-power density and potential utilization of cheap non-noble metal catalysts. However, anion exchange membranes (AEMs) still face the problems of low conductivity, poor dimensional and chemical stability. To address these issues, AEMs with clustered piperidinium groups and ether-bond-free poly(terphenylene) backbone (3QPAP-x, x = 0.3, 0.4, and 0.5) were designed. Transmission electron microscope results show that the clustered ionic groups are responsible for fabricating well-developed conductive nanochannels and restraining the swelling behavior of the membranes. 3QPAP-0.4 and 3QPAP-0.5 AEMs exhibit higher conductivity (117.5 mS cm−1, 80 °C) and lower swelling ratio than that of commercial FAA-3-50 (80.4 mS cm−1, 80 °C). The conductivity of 3QPAP-0.5 only decreased by 10.4% after treating with 1 M NaOH at 80 °C for 720 h. The Hofmann elimination degradation of the cationic groups is restrained by the long flexible alkyl chain between cations. Based on the high performance of 3QPAP-0.5, an H2-O2-type AEMFC reaches 291.2 mW cm−2 (60 °C), which demonstrates that the as-prepared AEMs are promising for application in fuel cells. |
Databáze: | OpenAIRE |
Externí odkaz: |